当前位置:首页 > 代码 > 正文

粒子滤波跟踪算法代码(信号滤波算法)

admin 发布:2022-12-19 16:31 162


今天给各位分享粒子滤波跟踪算法代码的知识,其中也会对信号滤波算法进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

谁有粒子滤波C++实现的代码

程序流程:

1.命令行参数处理 -

2.设置随机数生成器环境,创建随机数生成器、并且对其初始化。-

3.初始化视频句柄 -

4.取视频中的一帧进行处理 -

1)GRB-HSV

2)保存当前帧在frames

3) 判断是否为第一帧,

若是则,

(1)忙等用户选定欲跟踪的区域

(2)计算相关区域直方图

(3)得到跟踪粒子

若不是则,

(1)对每个粒子作变换,并计算每个粒子的权重

(2)对粒子集合进行归一化

(3)重新采样粒子

4)画出粒子所代表的区域

5.释放图像

OpenCV学习——物体跟踪的粒子滤波算法实现之命令行参数处理

void arg_parse( int argc, char** argv )

{

int i = 0;

pname = remove_path( argv[0] );

while( TRUE )

{

char* arg_check;

int arg = getopt( argc, argv, OPTIONS );

if( arg == -1 )

break;

switch( arg )

{

case 'h':

usage( pname );

exit(0);

break;

case 'a':

show_all = TRUE;

break;

case 'o':

export = TRUE;

break;

case 'p':

if( ! optarg )

fatal_error( "error parsing arguments at -%c\n" \

"Try '%s -h' for help.", arg, pname );

num_particles = strtol( optarg, arg_check, 10 );

if( arg_check == optarg || *arg_check != '\0' )

fatal_error( "-%c option requires an integer argument\n" \

"Try '%s -h' for help.", arg, pname );

break;

default:

fatal_error( "-%c: invalid option\nTry '%s -h' for help.",

optopt, pname );

}

}

if( argc - optind 1 )

fatal_error( "no input image specified.\nTry '%s -h' for help.", pname );

if( argc - optind 2 )

fatal_error( "too many arguments.\nTry '%s -h' for help.", pname );

vid_file = argv[optind];

}

作者使用Getopt这个系统函数对命令行进行解析,-h表示显示帮助,-a表示将所有粒子所代表的位置都显示出来,-o表示输出tracking的帧,-p number进行粒子数的设定,然后再最后指定要处理的视频文件。

OpenCV学习——物体跟踪的粒子滤波算法实现之RGB-HSV

IplImage* bgr2hsv( IplImage* bgr )

{

IplImage* bgr32f, * hsv;

bgr32f = cvCreateImage( cvGetSize(bgr), IPL_DEPTH_32F, 3 );

hsv = cvCreateImage( cvGetSize(bgr), IPL_DEPTH_32F, 3 );

cvConvertScale( bgr, bgr32f, 1.0 / 255.0, 0 );

cvCvtColor( bgr32f, hsv, CV_BGR2HSV );

cvReleaseImage( bgr32f );

return hsv;

}

程序现将图像的像素值归一化,然后使用OpenCV中的cvCvtcolor函数将图像从RGB空间转换到HSV空间。

OpenCV学习——物体跟踪的粒子滤波算法实现之设定随机数

gsl_rng_env_setup();//setup the enviorment of random number generator

rng = gsl_rng_alloc( gsl_rng_mt19937 );//create a random number generator

gsl_rng_set( rng, time(NULL) );//initializes the random number generator.

作者使用GSL库进行随机数的产生,GSL是GNU的科学计算库,其中手册中random部分所述进行随机数生成有三个步骤:

随机数生成器环境建立,随机数生成器的创建,随机数生成器的初始化。

OpenCV学习——物体跟踪的粒子滤波算法实现之计算选定区域直方图

histogram** compute_ref_histos( IplImage* frame, CvRect* regions, int n )

{

histogram** histos = malloc( n * sizeof( histogram* ) );

IplImage* tmp;

int i;

for( i = 0; i n; i++ )

{

cvSetImageROI( frame, regions[i] );//set the region of interest

tmp = cvCreateImage( cvGetSize( frame ), IPL_DEPTH_32F, 3 );

cvCopy( frame, tmp, NULL );

cvResetImageROI( frame );//free the ROI

histos[i] = calc_histogram( tmp, 1 );//calculate the hisrogram

normalize_histogram( histos[i] );//Normalizes a histogram so all bins sum to 1.0

cvReleaseImage( tmp );

}

return histos;

}

程序中先设置了一个类型为histogram的指向指针的指针,是histogram指针数组的指针,这个数组是多个选定区域的直方图数据存放的位置。然后对于每一个用户指定的区域,在第一帧中都进行了ROI区域设置,通过对ROI区域的设置取出选定区域,交给函数calc_histogram计算出直方图,并使用normalize_histogram对直方图进行归一化。

计算直方图的函数详解如下:

histogram* calc_histogram( IplImage** imgs, int n )

{

IplImage* img;

histogram* histo;

IplImage* h, * s, * v;

float* hist;

int i, r, c, bin;

histo = malloc( sizeof(histogram) );

histo-n = NH*NS + NV;

hist = histo-histo;

memset( hist, 0, histo-n * sizeof(float) );

for( i = 0; i n; i++ )

{

img = imgs[i];

h = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 );

s = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 );

v = cvCreateImage( cvGetSize(img), IPL_DEPTH_32F, 1 );

cvCvtPixToPlane( img, h, s, v, NULL );

for( r = 0; r img-height; r++ )

for( c = 0; c img-width; c++ )

{

bin = histo_bin( pixval32f( h, r, c ),

pixval32f( s, r, c ),

pixval32f( v, r, c ) );

hist[bin] += 1;

}

cvReleaseImage( h );

cvReleaseImage( s );

cvReleaseImage( v );

}

return histo;

}

这个函数将h、s、 v分别取出,然后以从上到下,从左到右的方式遍历以函数histo_bin的评判规则放入相应的bin中(很形象的)。函数histo_bin的评判规则详见下图:

|----|----|----|。。。。|----|------|------|。。。。|-------|

1NH 2NH 3NH NS*NH NS*NH+1 NS*NH+2 NS*NH+NV

OpenCV学习——物体跟踪的粒子滤波算法实现之初始化粒子集

particle* init_distribution( CvRect* regions, histogram** histos, int n, int p)

{

particle* particles;

int np;

float x, y;

int i, j, width, height, k = 0;

particles = malloc( p * sizeof( particle ) );

np = p / n;

for( i = 0; i n; i++ )

{

width = regions[i].width;

height = regions[i].height;

x = regions[i].x + width / 2;

y = regions[i].y + height / 2;

for( j = 0; j np; j++ )

{

particles[k].x0 = particles[k].xp = particles[k].x = x;

particles[k].y0 = particles[k].yp = particles[k].y = y;

particles[k].sp = particles[k].s = 1.0;

particles[k].width = width;

particles[k].height = height;

particles[k].histo = histos[i];

particles[k++].w = 0;

}

}

i = 0;

while( k p )

{

width = regions[i].width;

height = regions[i].height;

x = regions[i].x + width / 2;

y = regions[i].y + height / 2;

particles[k].x0 = particles[k].xp = particles[k].x = x;

particles[k].y0 = particles[k].yp = particles[k].y = y;

particles[k].sp = particles[k].s = 1.0;

particles[k].width = width;

particles[k].height = height;

particles[k].histo = histos[i];

particles[k++].w = 0;

i = ( i + 1 ) % n;

}

return particles;

}

程序中的变量np是指若有多个区域n,则一个区域内的粒子数为p/n,这样粒子的总数为p。然后程序对每个区域(n个)中p/n个粒子进行初始化,三个位置坐标都为选定区域的中点,比例都为1,宽度和高度为选定区域的高度。然后又跑了个循环确定p个粒子被初始化。

OpenCV学习——物体跟踪的粒子滤波算法实现之粒子集合变换

particle transition( particle p, int w, int h, gsl_rng* rng )

{

float x, y, s;

particle pn;

x = A1 * ( p.x - p.x0 ) + A2 * ( p.xp - p.x0 ) +

B0 * gsl_ran_gaussian( rng, TRANS_X_STD ) + p.x0;

pn.x = MAX( 0.0, MIN( (float)w - 1.0, x ) );

y = A1 * ( p.y - p.y0 ) + A2 * ( p.yp - p.y0 ) +

B0 * gsl_ran_gaussian( rng, TRANS_Y_STD ) + p.y0;

pn.y = MAX( 0.0, MIN( (float)h - 1.0, y ) );

s = A1 * ( p.s - 1.0 ) + A2 * ( p.sp - 1.0 ) +

B0 * gsl_ran_gaussian( rng, TRANS_S_STD ) + 1.0;

pn.s = MAX( 0.1, s );

pn.xp = p.x;

pn.yp = p.y;

pn.sp = p.s;

pn.x0 = p.x0;

pn.y0 = p.y0;

pn.width = p.width;

pn.height = p.height;

pn.histo = p.histo;

pn.w = 0;

return pn;

}

程序使用动态二阶自回归模型作为基本变换思路,变换的对象有坐标x,坐标y,和比例s。变换的x和y要符合在width和height之内的条件。

OpenCV学习——物体跟踪的粒子滤波算法实现之粒子集重新采样

particle* resample( particle* particles, int n )

{

particle* new_particles;

int i, j, np, k = 0;

qsort( particles, n, sizeof( particle ), particle_cmp );

new_particles = malloc( n * sizeof( particle ) );

for( i = 0; i n; i++ )

{

np = cvRound( particles[i].w * n );

for( j = 0; j np; j++ )

{

new_particles[k++] = particles[i];

if( k == n )

goto exit;

}

}

while( k n )

new_particles[k++] = particles[0];

exit:

return new_particles;

}

程序先使用C标准库中的qsort排序函数,按照权重,由大到小将原粒子集排序。然后将权重大的在新的粒子集中分配的多一点。

OpenCV学习——物体跟踪的粒子滤波算法实现之权重归一化

void normalize_weights( particle* particles, int n )

{

float sum = 0;

int i;

for( i = 0; i n; i++ )

sum += particles[i].w;

for( i = 0; i n; i++ )

particles[i].w /= sum;

}

opencv怎么计算物体移动速度 求具体解决方法,最好能有源代码参考一下,

你起码得识别出来这个物体啊!

然后通过跟踪算法 kalman 粒子滤波 跟踪这个物体的中心点 比如重心

根据移动的速度和时间来计算

你先做出来物体识别跟踪 速度自然就有了

百度搜 物体识别 opencv

kalman opencv

如何用c语言编写跟踪程序~~以往是用粒子滤波算法跟踪

Python break语句,就像在C语言中,打破了最小封闭for或while循环。

break语句用来终止循环语句,即循环条件没有False条件或者序列还没被完全递归完,也会停止执行循环语句。

break语句用在while和for循环中。

如果您使用嵌套循环,break语句将停止执行最深层的循环,并开始执行下一行代码。

救命啊!!关于改进粒子滤波算法问题

粒子滤波算法的核心思想是:为了求解数学或物理等方面的问题,首先建立一个概率模型或者随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或采样试验计算所求参数的统计特征;最后给出所求解的近似值。

下面详细介绍粒子滤波的基本思想。

粒子滤波就是用完全描述后验概率密度分布

这里,x0:k={xj,j=0,…,k},z0:k={zj,j=0,…,k},分别表示各个时刻的系统状态和观测状态,表示j时刻所对应的粒子的归一化权值,即

直接从后验概率p(x0:k|z1:k)中进行取样是比较困难的。假设存在π(x),有并且可以很方便地从π(x)中进行取样,这样的π(x)称作重要性密度。根据贝叶斯理论有:

这样,就能很容易对系统状态进行估计,权值的递推方程可以写成:

在k时刻的后验概率密度可以近似地写成:

1.2 粒子滤波算法改进策略

传统的粒子滤波算法需要使用状态转移后的所有粒子进行系统观测和重采样。这使得计算量很大,而且增加了错误信息,甚至会导致跟踪目标漂移。鉴于此,笔者对传统的粒子滤波进行了一系列的改进。在对系统观测过程进行改进时,只选取局部最优粒子(即权值较大的粒子)进行状态转移;在重采样环节,也使用了这种局部最优原理,只选取部分大权值粒子。改进的粒子滤波算法,能够在很大程度上解决上述问题。

图1描述的是状态转移环节,当前时刻所有粒子对应的位置服从均匀分布。图中“○”表示跟踪目标在该时刻的真实位置,黑点表示该时刻的粒子,黑点的大小代表粒子权值的大小。

由图发现,离“○”越近的粒子权值越大,超出1/2粒子传播半径的粒子,权值可忽略。根据这种先验知识,基于局部最优化原理选取部分粒子。当利用粒子进行系统观测时,将粒子按权值大小依次排序,只需选取半数大权值粒子,就能很准确地计算出最优估计的位置。这种改进策略可使该环节的计算量减少40%。由于忽略了远处的粒子,剔除了部分错误信息,因此跟踪精度也得到了提高。

粒子重采样环节的改进是分裂粒子时只选取上述的半数大权值粒子。改进的重采样具体实现过程如下:将系统观测过程中使用的粒子,按大小排序均分为两组。权值大的一组,每个粒子分裂为三个新的粒子;权值较小的一组,每个粒子只生成一个新粒子。这样做不但简化了计算,提高了运行速度,而且增强了重采样粒子的有效性。

该改进算法的优点:(1)使得后验分布样本更加接近真实分布;(2)大大减少了计算量。多次实验表明,改进算法在人体运动跟踪时较传统算法效果更好,鲁棒性更高。

2 基于改进粒子滤波算法的人体运动跟踪

视频中的特定人体有其独特的运动特征,且其关节运动都是非刚性的。为使运动模型在运动预测中有更好的适用性和更高的准确性,依据统计分析的成果,采用一阶自回归过程ARP(Auto-Regressive Process)动力学模型作为运动模型,并通过训练序列计算出该模型的参数。在模板区域相似性计算的基础上,通过粒子滤波实现人体运动的跟踪。基于这一基本思路,本文提出基于粒子滤波的人体运动跟踪的流程图,如图2所示。

2.1 初始化

跟踪初始化,就是按运动模型的要求,在初始帧形成表示各自分布模型的粒子集。具体过程如下:在被跟踪序列的初始帧中手动提取目标模板,将它作为起始帧的状态向量。提取目标的初始运动参数在状态向量的各分量上加正态随机噪声,构造N个状态向量,即粒子数为N,每个粒子代表一个可能的运动状态。若初始的权值ωi为1,则具有N个运动状态参数这里Pi选择Pinit附近的点。

2.2 采样

采样就是从表示先验模型的状态向量集中按概率选取其中的若干向量。一次采样选取一个状态向量,进行N次这样的采样,得到N个新的状态向量。显然,权值太小的状态向量(即粒子)在采样过程中被选中的概率就小,而且在逐步迭代中可能被丢掉;权值大的粒子被选中的概率就比较大,也可能被多次选中。这样,采样得到的新的粒子集能更好地估计概率分布。

2.3 状态转移

系统状态转移,即粒子的传播过程。从采样得到的新的粒子集出发,经运动模型计算得到预测模型。粒子传播是一种随机运动过程,服从一阶ARP方程。

式中,xt为目标在t时刻的状态,wt-1是归一化噪声量,A和B是常数。这里,t时刻系统的状态转移过程与当前时刻的观测量无关。

粒子Ni的运动状态参量为:

式中,A1、A2、B1、B2为常数,一般A取1,B为粒子传播半径(系统状态转移过程中,粒子所能够传播的范围),W是[-1,1]内的随机数。系统状态转移的实质就是在坐标上迭加一个扰动量。

这一步是先验概率的传播过程,即“假设”目标状态将以何种方式传播。粒子传播是否合理需要通过下一阶段即系统观测进行验证。

2.4 系统观测

系统观测过程就是将当前预测模型中的每一个状态向量所对应的外观模型与由其确定的当前帧图像中的对应区域进行相似性计算,并给每一个状态向量赋一个权值。

每个粒子状态转移后,用对应新坐标计算一个MADi。

定义概率密度函数为:

它作为当前帧的跟踪结果输出。

2.5 重采样

按上述采样、转移和观测过程完成当前帧的跟踪计算后,对当前帧的后验模型进行同样的采样,得到下一帧的先验模型。进而可以对下一帧进行新的预测和观测,继续后续序列的跟踪计算,直至最后一帧,完成跟踪过程。

3 实验仿真和分析

3.1 仿真结果

粒子滤波如何在算法中实现目标跟踪 就是怎么一步步实现跟踪的,求高手帮助

我通俗解释一下,粒子滤波(PF)的应用大致这样:(其实目标跟踪的理论就是对状态向量的实时估值)

设有一堆样本,假设有N个,初始给他们同样的权值1/N。

这个系统状态转移方程,一般是非线性的,我们只需要知道怎么做才能把这时刻的状态值传播到下一个时刻。具体做法,N个样本值通过状态转移得下一时刻的样本预测值,包含过程噪声因素。d

系统还有一个非线性的观测方程,通过它得到真正的观测值Z。这时候,把N个样本预测值带进去获得Z‘。

根据Z’和Z相差的程度,决定对这个样本的可信程度,当然越接近的越好,然后把这些可信程度进行权值归一化。

重采样环节,把这些样本按照权值进行随机采样(权值越高的,当然越容易被抽中。比如说,下一时刻的值,有四个样本说等于1,有两个样本说等于1.5,那么有2/3概率认为等于1.这个解释起来真的有够复杂的,一般做起来200~300个样本获得的值都接近一样了,还要设个2/3n的阈值防止粒子匮乏,也就是防止所有样本得到相同的后验估计结果),获得的值尽可能接近真实发生的情况。

循环2~5

粒子滤波算法的具体流程是怎样的?

粒子滤波(PF: Particle Filter)算法起源于20世纪50年代Poor Man's Monte Carlo问题的研究,但第一个具有应用性的粒子滤波算法于1993年由Gordon等提出(“A novel Approach to nonlinear/non-Gaussian Bayesian State estimation”)。它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。其核心思想是通过从后验概率中抽取的随机状态粒子来表示其分布情况,是一种顺序重要性采样法(Sequential Importance Sampling)。

粒子滤波的应用非常广泛,尤其是在目标跟踪(“A probabilistic framework for matching temporal trajectories”)等视觉任务方面。粒子滤波算法有许多不同的改进方式。针对不同的问题,PF算法被改造以适应更好的问题。本文主要侧重于目标跟踪方面的应用。以人脸跟踪为例,下图展示了粒子滤波的跟踪结果。下面介绍下粒子滤波的基本过程:初始化、概率转移、权重重计算和重采样四个阶段。

1.初始化阶段

跟踪区域初始化。在使用粒子滤波算法进行目标跟踪前需要选择要跟踪的目标物体。这个过程可以用人工划定方法和自动识别方法。使用人工的方法可以通过鼠标在图像区域标记出一个感兴趣矩形;使用自动的方法就是利用自动的目标检测技术,初步检测出图像中要跟踪物体的大致位置。以人脸跟踪为例,人工方法就是鼠标划定视频第一帧中人脸的区域;自动方法就是可以使用人脸检测算法检测出人脸的初始位置。

粒子初始化。对于本文人脸检测的示例,粒子就是图像中的矩形区域,主要由矩形中心(x,y)和宽高(w,h)四个变量表示。粒子初始化的步骤,就是在图像中选择指定数量的粒子(矩形),比如N=100个粒子。粒子初始化过程就是在图像中随机或指定方式放粒子。比如说,我们可以指定100个粒子初始状态和跟踪区域一致,即粒子参数和跟踪区域的(x,y,w,h)相等。

2.状态转移阶段

使用粒子滤波算法来对目标进行跟踪,即是通过前一次的先验概率来估算出当前环境下的后验概率密度,这个过程也是由粒子来完成的。具体来说,即根据上一帧中粒子的状态(x,y,w,h)t-1,来估计出本帧中各个粒子的状态(x,y,w,h)t。从上一帧图像的粒子状态转变为当前帧粒子的状态,这个变异过程就叫作转移(transmission)。粒子滤波的转移方程跟Kalman滤波的差不多:

上面的是状态转移方程,下面的为观测方程,wk和vk是高斯噪声。在本文示例中,xk=(x,y,w,h)t。变量x,y,w,h可以依据公式(1)分别更新。在不同的算法中,f采用的函数也不相同。如果xk=xk-1+wk,则状态转移方程其实是随机游走过程;如果xk=Axk-1+wk,状态转移方程则为一阶自回归方程;如果xk=A1xk-1+A2xk-2+wk,则状态转移方程为二阶自回归方程。

3.权重重计算阶段

转移阶段将上一帧中粒子的位置进行了转移,得到当前帧中新的位置。但并不是所有粒子的作用都有用。也就是有些粒子并不是跟踪区域所要所移动的位置。因此,在此阶段,粒子滤波算法将对每个粒子进行打分,将得分较低的粒子删除,将得分多的粒子生成更多的粒子(重采样过程完成)。具体打分的方法根据不同的需求会不同,例如人脸跟踪方法中使用距离作为衡量的标准。将每个粒子与跟踪区域进行相似度计算(在这里,分别提取粒子和跟踪区域的视觉特征进行计算,比如颜色直方图),使用相似度作为相应粒子的权重。每一个粒子都需要计算其权重,并且需要将其归一化。该阶段其实也是后验概率进行更新的过程。

4.重采样阶段

粒子滤波算法会淘汰权值低的粒子,让权值高的粒子来产生出更多的粒子,这就使得算法朝着权值高的地方收敛。假设有100个粒子,1号粒子的权重为0.02而2号粒子的权重为0.003。于是在重采样阶段,1号粒子生孩子的指标是0.02×100=2,2号粒子的指标是0.003×100=0.3,可以发现,1号粒子除了刚产生的粒子外还要再额外的产生一个粒子,而2号粒子就被铲除了。如此,最后得到的100个粒子即为所求,然后取个加权平均就得到了目标的状态值。

粒子滤波跟踪算法代码的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于信号滤波算法、粒子滤波跟踪算法代码的信息别忘了在本站进行查找喔。

版权说明:如非注明,本站文章均为 AH站长 原创,转载请注明出处和附带本文链接;

本文地址:http://ahzz.com.cn/post/13121.html


取消回复欢迎 发表评论:

分享到

温馨提示

下载成功了么?或者链接失效了?

联系我们反馈

立即下载